

Benedikt Ernst, Joerg R. Seume

6. Dresdner Probabilistik-Workshop 10th - 11th October 2013, Dresden

Prof. Dr. Seume

Institute of Turbomachinery and Fluid Dynamics

Leibniz Universität Hannover

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Outline

- 1. Introduction
- 2. Modelling Structural Uncertainty
- 3. Simulation Process
- 4. Results
- 5. Conclusions and Outlook

Benedikt Ernst

October 11th, 2013

Slide 2 / 18

© Leibniz Universität Hannover 2013

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Benedikt Ernst
October 11th, 2013
Slide 3 / 18

© Leibniz Universität Hannover 2013

Motivation

For long and slender rotor blades, the consideration of uncertainties and aeroelastic phenomena becomes increasingly important.

- Imperfections of composite materials due to the variability of
 - the fiber and matrix material properties,
 - fiber volume ratio,
 - **–** ...
- Manufacturing tolerances due to non-automated processes

Pictures: Gasch and Twele (2011); Sørensen et al. (2004); Burton et al. (2011)

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Benedikt Ernst
October 11th, 2013
Slide 4 / 18

Approach

Using spatial random fields and Latin hypercube sampling to investigate the effect of structural uncertainty of rotor blades on...

- 1) the full system mode shapes and
- 2) the system natural frequencies of an offshore wind turbine (OWT).

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Benedikt Ernst

October 11th, 2013

Slide 5 / 18

© Leibniz Universität Hannover 2013

Aeroealstic Wind Turbine Model

The aeroelastic model of the NREL 5MW reference wind turbine is used with 15 degrees of freedom (DOF).

- Pitch-controlled variable-speed wind turbine
- Based on available information of the REpower 5M and the DOWEC design study

Rated power	5000 kW
Rotor diameter	126 m
Hub height	90 m
Cut-in, rated, cut-out wind speed	3, 11.4, 25 m/s
Cut-in, rated rotor speed	6.9, 12.1 rpm

- Known data of:
 - blade structural and aerodynamic properties
 - nacelle and hub
 - drivetrain
 - tower
 - control system

Source: REpower

Jonkman J., Buttereld S., Musial W., and Scott G. (2009): *Defnition of a 5-MW Reference Wind Turbine for Offshore System Development*. NREL/TP-500-38060. Golden, Colorado, USA: National Renewable Energy Laboratory

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Benedikt Ernst
October 11th, 2013

Slide 6 / 18

© Leibniz Universität Hannover 2013

Modeling Structural Uncertainty of Rotor Blades

- Structural blade parameters are varied with respect to the corresponding baseline parameters.
- Variations are normally distributed ($\mu = 0\%$, $\sigma = 10\%$).
- Spatial variations of the structural parameters along the blade are...
 - uniform,
 - independent, or
 - correlated.

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Benedikt Ernst
October 11th, 2013
Slide 7 / 18

Homogeneous, Isotropic, Gaussian Random Field

Variations of structural properties, which are spatially correlated, can be described by a random field $h(x,\theta)$.

- Spatial distribution is fully characterized by its mean and its covariance.
- Inverse-exponential correlation with b=0.1L, 0.5L, and 1L is assumed.
- Karhunen-Loève expansion is used to create random fields.

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Spatial Parameter Variations

The rotor blade is divided into 50 equally spaced elements/cross sections and 1000 samples are created for each type of spatial variation.

- Spatial independent variations can cause local extreme fluctuations.
- The correlation increases with an increasing correlation length b.
 - → Variations along the blade become smoother.

Benedikt Ernst
October 11th, 2013
Slide 8 / 18

© Leibniz Universität Hannover 2013

Simulation Process

Investigation of Structural Uncertainty of Wind Turbine Rotor Blades

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Benedikt Ernst

October 11th, 2013

Slide 9 / 18

© Leibniz Universität Hannover 2013

FAST: Jonkman J. M. and Buhl Jr. M. J. (2005): *FAST User's Guide.* NREL/TP-500-38230. Golden, Colorado, USA: National Renewable Energy Laboratory

BModes: Bir G. S. (2005): *User* 's *Guide to BModes (Software for Computing Rotating Beam Coupled Modes)*. NREL/TP-500-39133. Golden, Colorado, USA: National Renewable Energy Laboratory

and Fluid Dynamics

Investigation of Structural Uncertainty of Wind Turbine Rotor Blades

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Benedikt Ernst
October 11th, 2013

Slide 10 / 18

Blade Eigenfrequencies at Standstill (BModes)

- Scatter of blade eigenfrequencies are almost identical
- → Increase in scatter with increasing correlation length
- → Relative deviations seem to be normally distributed

Variations of Blade Mode Shapes at Standstill (BModes)

Investigation of Structural Uncertainty of Wind Turbine Rotor Blades

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Benedikt Ernst October 11th, 2013

Slide 11 / 18

→ No scatter of the mode shapes for spatially uniform variations

→ Increase in scatter of the mode shapes with decreasing correlation length

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Benedikt Ernst

October 11th, 2013

Slide 12 / 18

First 5 Rotor Modes at Standstill

The drivetrain and the tower-nacelle subsystem feel combined effects of all rotor blades.

1st collective flapwise

1st flapwise yaw

1st flapwise pitch

1st edgewise yaw

1st edgewise pitch

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Benedikt Ernst
October 11th, 2013

Slide 13 / 18

© Leibniz Universität Hannover 2013

System Natural Frequencies at Standstill (FAST)

- → High frequency scatter for the rotor modes
- → Significant impact on the drivetrain
- Almost no effect on the tower modes
- Correlation length b=0.1L seems to be a reasonable assumption

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

l l Leibniz l 0 2 Universität l 0 0 4 Hannover

Benedikt Ernst
October 11th, 2013

Slide 14 / 18

Natural Frequency of the 1st Flapwise Yaw Mode (b=0.1L)

Correlation between the structural parameters and the frequency

- → Relative deviations follow a normal distribution
- → Negative dependency between blade mass density and frequency
- → Positive dependency between flapwise stiffness and frequency

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

l l Leibniz l 0 2 Universität l 0 0 4 Hannover

Benedikt Ernst
October 11th, 2013

Slide 15 / 18

© Leibniz Universität Hannover 2013

Natural Frequency of the 1st Edgewise Yaw Mode (b=0.1L)

Correlation between the structural parameters and the frequency

- → Relative deviations follow a normal distribution
- → Negative dependency between blade mass density and frequency
- → Positive dependency between edgewise stiffness and frequency

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Benedikt Ernst
October 11th, 2013

Slide 16 / 18

© Leibniz Universität Hannover 2013

Campbell Diagram (b=0.1L)

- → High frequency scatter of the rotor modes in the operating range
- → Increased risk for resonances, e.g. drivetrain torsion and 3P frequency

Error bars: inter-quantile range $IQR = Q_{0.975} - Q_{0.025}$

Outline

Introduction

Structural Uncertainty

Simulation Process

Results

Conclusions and Outlook

Benedikt Ernst
October 11th, 2013

Slide 17 / 18

Conclusions and Outlook

Conclusions

- Spatial uncertainty of structural blade parameters is modeled with a random field approach:
 - Increasing correlation length leads to a larger frequency scatter.
 - Correlation length b=0.1L seems to be a reasonable assumption.
- Variations of blade structural parameters cause
 - a significant effect on blade eigenfrequencies and mode shapes.
 - a significant effect on system natural frequencies of the rotor modes.
 - an increased risk for resonances.
- Scatter of the frequencies follows a normal distribution.

Outlook

- Investigation of modal frequencies at different wind speeds
- Combined analysis of structural and geometric uncertainties
- Investigation of the effect on the loads

Thank you for your attention!

Contact:

Benedikt Ernst
Leibniz Universität Hannover
Institute of Turbomachinery and Fluid Dynamics
Appelstr. 9
D-30167 Hannover

Tel.: +49 511 762 2734

E-Mail: ernst@tfd.uni-hannover.de
Web: www.tfd.uni-hannover.de

Prof. Dr. Seume

Institute of Turbomachinery and Fluid Dynamics

Leibniz Universität Hannover